Self-limiting lithiation in silicon nanowires.

نویسندگان

  • Xiao Hua Liu
  • Feifei Fan
  • Hui Yang
  • Sulin Zhang
  • Jian Yu Huang
  • Ting Zhu
چکیده

The rates of charging and discharging in lithium-ion batteries (LIBs) are critically controlled by the kinetics of Li insertion and extraction in solid-state electrodes. Silicon is being intensively studied as a high-capacity anode material for LIBs. However, the kinetics of Li reaction and diffusion in Si remain unclear. Here we report a combined experimental and theoretical study of the lithiation kinetics in individual Si nanowires. By using in situ transmission electron microscopy, we measure the rate of growth of a surface layer of amorphous Li(x)Si in crystalline Si nanowires during the first lithiation. The results show the self-limiting lithiation, which is attributed to the retardation effect of the lithiation-induced stress. Our work provides a direct measurement of the nanoscale growth kinetics in lithiated Si, and has implications on nanostructures for achieving the high capacity and high rate in the development of high performance LIBs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication and Electrochemical Performance of Interconnected Silicon Nanowires Synthesized from AlCu Catalyst

Highly interconnected silicon nanowires (SiNW) were prepared by a vapor−liquid−solid process using a multilayered AlCu film as the catalyst. The resulting SiNWs had a branched and interconnected structure where the AlCu catalyst was incorporated into the SiNWs. The electrochemical lithiation of the SiNWs was investigated through both deep and shallow cycling. The first cycle Coulombic efficienc...

متن کامل

Probing Stress States in Silicon Nanowires During Electrochemical Lithiation Using In Situ Synchrotron X-Ray Microdiffraction

Citation: Ali I, Tippabhotla SK, Radchenko I, Al-Obeidi A, Stan CV, Tamura N and Budiman AS (2018) Probing Stress States in Silicon Nanowires During Electrochemical Lithiation Using In Situ Synchrotron X-Ray Microdiffraction. Front. Energy Res. 6:19. doi: 10.3389/fenrg.2018.00019 Probing stress states in silicon nanowires During electrochemical lithiation Using In Situ synchrotron X-ray Microdi...

متن کامل

Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires.

Recent independent experiments demonstrated that the lithiation-induced volume expansion in silicon nanowires, nanopillars, and microslabs is highly anisotropic, with predominant expansion along the <110> direction but negligibly small expansion along the <111> direction. The origin of such anisotropic behavior remains elusive. Here, we develop a chemomechanical model to study the phase evoluti...

متن کامل

Novel size and surface oxide effects in silicon nanowires as lithium battery anodes.

With its high specific capacity, silicon is a promising anode material for high-energy lithium-ion batteries, but volume expansion and fracture during lithium reaction have prevented implementation. Si nanostructures have shown resistance to fracture during cycling, but the critical effects of nanostructure size and native surface oxide on volume expansion and cycling performance are not unders...

متن کامل

The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation

icle as: M.T. McDow hiation/delithiatio Abstract Applying surface coatings to alloying anodes for Li-ion batteries can improve rate capability and cycle life, but it is unclear how this second phase affects mechanical deformation during electrochemical reaction. Here, in-situ transmission electron microscopy is employed to investigate the electrochemical lithiation and delithiation of silicon n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS nano

دوره 7 2  شماره 

صفحات  -

تاریخ انتشار 2013